Surface Marker Analysis to Predict Successful Reprogramming to Pluripotency
نویسندگان
چکیده
منابع مشابه
Reprogramming cancer cells to pluripotency
T epigenetic marks displayed by a cancer cell originate from two separate processes: The most prominent epigenetic signatures are associated with the cell of origin, i.e., the lineage and cell type identity imposed during development. The second set comprises those aberrant cancer-specific epigenetic marks that appear during tumor initiation or subsequent malignant progression. These are genera...
متن کاملEpigenetics of Reprogramming to Induced Pluripotency
Reprogramming to induced pluripotent stem cells (iPSCs) proceeds in a stepwise manner with reprogramming factor binding, transcription, and chromatin states changing during transitions. Evidence is emerging that epigenetic priming events early in the process may be critical for pluripotency induction later. Chromatin and its regulators are important controllers of reprogramming, and reprogrammi...
متن کاملUsing heterokaryons to understand pluripotency and reprogramming.
Reprogramming differentiated cells towards pluripotency can be achieved by different experimental strategies including the forced expression of specific 'inducers' and nuclear transfer. While these offer unparalleled opportunities to generate stem cells and advance disease modelling, the relatively low levels of successful reprogramming achieved (1-2%) makes a direct analysis of the molecular e...
متن کاملHow microRNAs facilitate reprogramming to pluripotency.
The ability to generate pluripotent stem cells from a variety of cell and tissue sources through the ectopic expression of a specific set of transcription factors has revolutionized regenerative biology. The development of this reprogramming technology not only makes it possible to perform basic research on human stem cells that do not have to be derived from embryos, but also allows patient-sp...
متن کاملp53 connects tumorigenesis and reprogramming to pluripotency
The tumor suppressor gene p53 prevents the initiation of tumor formation by inducing cell cycle arrest, senescence, DNA repair, and apoptosis. Recently, the absence or mutation of p53 was described to facilitate nuclear reprogramming. These findings suggest an influence of p53 on the de-differentiation process, and highlight the similarities between induction of pluripotency and tumor formation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biomedical Journal of Scientific & Technical Research
سال: 2019
ISSN: 2574-1241
DOI: 10.26717/bjstr.2019.12.002283